Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library.

نویسندگان

  • Joerg Overhage
  • Shawn Lewenza
  • Alexandra K Marr
  • Robert E W Hancock
چکیده

During a screening of a mini-Tn5-luxCDABE transposon mutant library of Pseudomonas aeruginosa PAO1 for alterations in swarming motility, 36 mutants were identified with Tn5 insertions in genes for the synthesis or function of flagellin and type IV pilus, in genes for the Xcp-related type II secretion system, and in regulatory, metabolic, chemosensory, and hypothetical genes with unknown functions. These mutants were differentially affected in swimming and twitching motility but in most cases had only a minor additional motility defect. Our data provide evidence that swarming is a more complex type of motility, since it is influenced by a large number of different genes in P. aeruginosa. Conversely, many of the swarming-negative mutants also showed an impairment in biofilm formation, indicating a strong relationship between these types of growth states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes.

Pseudomonas aeruginosa is a major cause of nosocomial (hospital-derived) infections, is the predominant pathogen in chronic cystic fibrosis lung infections, and remains difficult to treat due to its high intrinsic antibiotic resistance. The completion of the P. aeruginosa PAO1 genome sequence provides the opportunity for genome-wide studies to increase our understanding of the pathogenesis and ...

متن کامل

12-Methyltetradecanoic acid, a branched-chain fatty acid, represses the extracellular production of surfactants required for swarming motility in Pseudomonas aeruginosa PAO1.

Pseudomonas aeruginosa is known to produce surfactants that are involved in its swarming motility behavior, such as rhamnolipids and their precursors-3-(3-hydroxyalkanoyloxy)-alkanoic acids (HAAs). In P. aeruginosa PAO1, swarming motility is inhibited by some fatty acids, including branched-chain fatty acids and unsaturated fatty acids. In the present study, addition of 12-methyltetradecano...

متن کامل

Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa.

Pseudomonas aeruginosa is an important opportunistic pathogen that causes infections that can be extremely difficult to treat due to its high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It is demonstrated here that the psrA gene, encoding a transcriptional regulator, was upregulated in response to subinhibitory concentrations of...

متن کامل

Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1

The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a...

متن کامل

Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 5  شماره 

صفحات  -

تاریخ انتشار 2007